

Министерство здравоохранения Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Рязанский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации ФГБОУ ВО РязГМУ Минздрава России

Утверждено решением ученого совета Протокол № 1 от 01.09.2023 г

Фонд оценочных средств по дисциплине	«Биоорганическая химия»	
Образовательная программа	Основная профессиональная образовательная программа высшего образования - программа специалитета по специальности 31.05.03 Стоматология	
Квалификация	Врач-стоматолог	
Форма обучения	Очная	

Разработчик (и): кафедра общей химии

ФОИ	Ученая степень, ученое звание	Место работы (организация)	Должность
Сычев И.А.	д.б.н, доцент	ФГБОУ ВО РязГМУ Минздрава России	Заведующий кафедрой общей химии
Косова Ю.Д.	-	ФГБОУ ВО РязГМУ Минздрава России	Старший преподаватель кафедры общей химии
Обидина И.В.	к.б.н.	ФГБОУ ВО РязГМУ Минздрава России	доцент кафедры общей химии

Рецензент (ы):

МОФ	Ученая степень, ученое звание	Место работы (организация)	Должность
А.Н. Николашкин	к.ф.н., доцент	ФГБОУ ВО РязГМУ	Заведующий
		Минздрава России	кафедрой
			фармацевтической
			технологии
***		VEROVIDO D. ED WI	
И.В. Черных	д.б.н., доцент	ФГБОУ ВО РязГМУ	Заведующий
		Минздрава России	кафедрой
			фармацевтической
			химии и
			фармакогнозии

Одобрено учебно-методической комиссией по специальности Стоматология Протокол № 7 от 26.06. 2023 г.

Одобрено учебно-методическим советом. Протокол № 10 от 27.06. 2023 г.

Фонды оценочных средств

для проверки уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины

2. Оценочные средства для текущего контроля успеваемости

Вопросы для собеседования по теме «Способы выражения концентрации растворов. Закон эквивалентов. ТЭД. Сильные и слабые электролиты»

- 1. Определение и классификация растворов.
- 2. Способы выражения концентрации растворов (массовая доля, объемная доля, молярная концентрация, молярная концентрация эквивалента, моляльная концентрация, мольная доля.
- 3. Закон эквивалентов. Эквиваленты кислот, оснований, солей. Определение масс эквивалентов кислот, оснований, солей.
- 4. Взаимодействие веществ в растворах по закону эквивалентов.
- 5. Определение концентрации моль-эквивалента и объема раствора на основании законов эквивалентов.
- 6. Электролитическая диссоциация (причины электролитической диссоциации, механизм электролитической диссоциации для веществ с ионной связью, веществ с полярной связью).
- 7. Сильные и слабые электролиты. Константа диссоциации. Что называется степенью диссоциации? Какие факторы влияют на степень диссоциации?
- 8. Какая зависимость существует между степенью диссоциации, константой диссоциации и концентрацией раствора слабых электролитов?
- 9. Расчет концентраций ионов в растворах сильных электролитов, слабых электролитов (кислот, оснований)
- 10. Правила написания ионообменных реакций
- 11. Ионная сила, активность ионов. Уравнения Дебая и Хюккеля

Вопросы для собеседования по теме: «Теория кислот и оснований. Водородный и гидроксильный показатели»

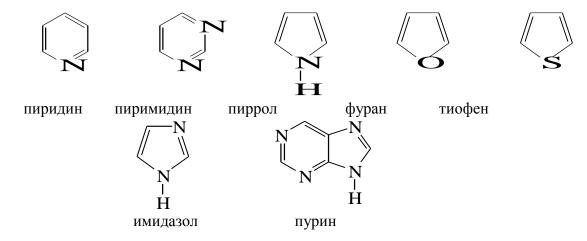
- 1. Теория кислот и оснований.
- 2. Ионное произведение воды. Водородный показатель.
- 3. Что называется водородным показателем (pH)? Гидроксильным показателем (pOH)? Как их можно рассчитать? Что значит: «кислая», «нейтральная», «щелочная среда»?

Вопросы для собеседования по теме «Коллигативные свойства растворов. Буферные растворы»

- 1. Коллигативные свойства растворов неэлектролитов, слабых, сильных электролитов.
- 2. Законы Рауля
- 3. Понижение температуры замерзания и повышение температуры кипения, зависимость их от концентрации раствора.
- 4. Эбулиоскопический и криоскопический методы определения молекулярных масс веществ.
- 5. Осмос и осмотическое давление. Закон Вант-Гоффа.
- 6. Изотонический коэффициент.
- 7. Роль осмоса и осмотического давления в биологических системах. Гипо-, гипер- и изотонические растворы. Плазмолиз и гемолиз.

- 8. Определение буферных систем. Классификация буферных систем.
- 9. Уравнения Гендерсона Гассельбаха для буферов 1 и 2 типов.
- 10. Механизм действия буферов (на примере ацетатного буфера, аммиачного буфера), формула расчета.
- 11. Буферная емкость.
- 12. Буферные системы крови. Механизм действия.
- 13. Значение буферных систем.

Вопросы для собеседования по теме «Пространственное строение органических соединений»


- 1. Как классифицируются органические реакции в зависимости от конечного продукта? Приведите примеры
- 2. Что такое энантиомеры? Что такое рацемат? С помощью проекционных формул Фишера приведите энантиомеры следующих соединений: глицериновый альдегид, молочная кислота, 2-аминопропановая кислота. Укажите асимметрические атомы углерода. Назовите каждый из изомеров.
- 3. С помощью проекционных формул Фишера изобразите все изомеры 2-гидрокси-3-хлорбутановой кислоты. Обозначьте этантиомеры и диастереомеры. Укажите асимметрические атомы углерода.
- 4. С помощью проекционных формул Фишера изобразите все изомеры 2-бром-3-хлорбутаналя. Обозначьте этантиомеры и диастереомеры. Укажите асимметрические атомы углерода.
- 5. С помощью проекционных формул Фишера изобразите все изомеры 2,3-дигидроксипентаналя. Обозначьте этантиомеры и диастереомеры. Укажите асимметрические атомы углерода.
- 6. Выберите в наборе соединений хиральные и отметьте в их структурных формулах ассиметрические атомы углерода:
- 1) 2-аминопропановая кислота, 2-метилбутанол-2, гидроксибутандиовая кислота
- 2) 2-аминоэтанол, 2-гидроксибутаналь, 2-амино-3-гидросипропановая кислота
- 7. Постройте формулы пространственных изомеров предложенных соединений и назовите их по поZ-E номенклатуре:
- 1) 2-бромо-1-хлоропропен-1
- 2) 2-йодобутен-2
- 3) 1-йод-1-хлоропропен-1
- 4) 2-хлоропентен-2
- 5)2-фторо-3-метилпентен-2
- 6)3-хлоробутен-2-ол-1
- 7) 1,3-дихлор-2-метилпропен

Вопросы для собеседования по теме «Общая характеристика органических соединений. Взаимное влияние атомов в органических соединениях. Сопряжение. Ароматичность»

- 1. Дайте определение ковалентной связи и приведите примеры.
- 2. Перечислите свойства ковалентной связи. Что такое σ и π связи?
- 3. Опишите механизм образования связи по донорно-акцепторному механизму на примере образования хлорида метиламмония.
- 4. Какую химическую связь называют водородной? Приведите примеры водородной связи в органических соединениях.

- 5. Какое явление называют сопряжением? Какие виды сопряжения вы знаете? Приведите примеры делокализованной ковалентной связи.
- 6. В каких системах осуществляется р,π-сопряжение? Приведите три примера: молекулы, катиона и свободного радикала. Для каждого примера схематично покажите перекрывание негибридных р-орбиталей, приводящее к образованию единой электронной системы (делокализованной ковалентной связи). Сколько электронов находится в сопряженной системе в каждом случае?
- 7. Проанализируйте возможность возникновения сопряжения в каждой частице и определите тип сопряжения:

- 8. Сформулируйте критерии ароматичности и примените их к нафталину, антрацену, фенантрену.
- 9. Приведите примеры ароматических гетероциклических соединений. Какие виды сопряжения осуществляются в них? Докажите ароматичность пиридина, пиримидина, пиррола, фурана, тиофена, имидазола, пурина.

- 10. Что такое индуктивный эффект? Приведите примеры.
- 11. Что такое мезомерный эффект? В каких случаях он возникает и как обозначается? Приведите примеры.
- 12. Дайте определение электронодорным и электроноакцепторным заместителям и перечислите их.
- 13. Определите, какие электронные эффекты возникают в каждом соединении, каков их знак. Обозначьте эффекты графически:

- 14. Какой тип реакций наиболее характерен для парафиновых углеводородов и почему?
- 15. Как изменяется легкость протекания реакции радикального замещения при переходе от третичного углерода к первичному и почему?
- 16. Что такое региоселективность? Объясните это на примере реакции монобромирования пропана, 2-метилбутана. Назовите продукты реакции.
- 17. Как называется тип реакций, наиболее свойственный этиленовым углеводородам? Напишите реакции гидратации, галогенирования, присоединения серной кислоты к алкенам.
- 18. Приведите уравнения реакции гидратации следующих соединений: 2-метилбутен-2, 2-метилбутен-1, пропеналь, 3-метилбутен-1, 1-метилциклогексен, пропеновая кислота.С позиций электронного влияния атомов объяснить, почему реакции присоединения воды и галогеноводородов к пропену протекают по правилу Марковникова, а к соединениям, имеющим электроноакцепторный заместитель у углерода двойной связи, против правила Марковникова.
- 19. Реакции окисления алкенов. Жесткое окисление сильными окислителями, мягкое окисление по Вагнеру на примере пропена и 2-метилпентена-2.
- 20. Приведите для этина, пропина, бутина-1 и бутина-2 по два уравнения реакций: а) гидратация; б) гидрохлорирование в избытке реагента. Назовите вещества.
- 21. Протекание реакций с образованием продуктов 1.2- и 1,4- присоединения на примере реакций бромирования и гидробромирования бутадиена-1,3
- 22. Приведите для циклопропана уравнения реакций галогенирования и гидрогалогенирования, протекающие с расщеплением цикла.
- 23. Учитывая ориентирующее влияние заместителя в бензольном кольце, приведите следующие уравнения реакций:
- 1) алкилирование толуола трет-бутиловым спиртом; 2) бромирование этилбензола
- 3) ацилирование нитробензола
- 24. Приведите схемы реакций окисления следующих соединений: *п*-ксилола, изопропилбензола, *мета*-диэтилбензола. Назовите продукты реакций.
- 25. Пространственное строение молекул. Понятие хиральности. Выберите в наборе соединений хиральные и отметьте в их структурных формулах ассиметрические атомы углерода: 1) 2-аминопропановая кислота, 2-метилбутанол-2, гидроксибутандиовая кислота
- 2) 2-аминоэтанол, 2-гидроксибутаналь, 2-амино-3-гидросипропановая кислота 26. Что такое энантиомеры? Что такое рацемат? С помощью проекционных формул Фишера приведите энантиомеры следующих соединений: глицериновый альдегид, молочная кислота, 2-аминопропановая кислота. Укажите асимметрические атомы углерода. Назовите каждый из изомеров.
- 26. С помощью проекционных формул Фишера изобразите все изомеры 2-гидрокси-3-хлорбутановой кислоты и 2-бром-3-хлорбутаналя. Обозначьте этантиомеры и диастереомеры. Укажите асимметрические атомы углерода.

Вопросы для собеседования по теме «Нуклеофильное замещение у насыщенного атома углерода. Спирты, тиолы, амины, галогенопроизводные. Реакции

элиминирования. Нуклеофильные реакции карбонильных соединений. Альдегиды. Кетоны»

- 1. Приведите классификацию спиртов. Напишите схемы реакций окисления первичного и вторичного спиртов. Назовите всех участников реакции.
- 2. Напишите реакцию нуклеофильного замещения при взаимодействии пропанола-1 с бромоводородом. Обоснуйте необходимость кислотного катализа.
- 3. Сравните кислотные свойства первичных, вторичных, третичных спиртов и фенола. Может ли вещество с наиболее сильными кислотными свойствами прореагировать с гидросульфитом калия?
- 4. Напишите схему реакций последовательного окисления этантиола. Назовите всех участников реакции. При использовании каких окислителей тиолы превращаются в дисульфиды? Напишите уравнение реакции, назовите вещества.
- 5. Приведите уравнение реакции взаимодействия третичного алкилгалогенида с водой. Назовите всех участников реакции.
- 6. Напишите реакции элиминирования для а) 2-хлорбутан; б) 3-метил-2-хлорпентана в) 2-метилбутанол-2. Назовите продукты реакции. Сформулируйте правило Зайцева.
- 7. Предложите способ получения заданного соединения, используя в качестве субстрата в реакции нуклеофильного замещения соответствующее галогенопроизводное и необходимый реагент.
- а) 3-метилбутанол-2; б) изопропилацетат; г) метилпропилсульфид; д) аллиловый спирт.
- 8. Приведите примеры аминов в зависимости от замещенных атомов водорода и от природы органических радикалов. Опишите строение атома азота в алифатических и ароматических аминах.
- 9. Сравните основные свойства первичных, вторичных, третичных аминов.
- 10. Напишите уравнения реакций последовательного алкилирования аммиака хлорметаном. Назовите всех участников реакции.
- 11. Сравните активность альдегидов и кетонов в реакциях нуклеофильного присоединения. Ответ обоснуйте.
- 12. Напишите уравнения реакций окисления и восстановления уксусного альдегида. Назовите продукты реакций.
- 13. Напишите уравнения реакций взаимодействия альдегидов и кетонов с азотосодержащими нуклеофилами (с аммиаком,2,4-динитрофенилгидразином). Назовите всех участников реакции.
- 14. Напишите уравнения реакций взаимодействия альдегидов и кетонов с кислородосодержащими нуклеофилами (водой, спиртами с получением полуацеталя и ацеталя). Назовите всех участников реакции.
- 15. Напишите уравнение реакции альдольной конденсации для пропаналя. Будет ли вступать в аналогичную реакцию бензальдегид? Ответ обоснуйте.
- 16. Напишите реакцию кротоновой конденсации.
- 17. Напишите реакцию диспропорционирования для бензальдегида. Будет ли в эту реакцию вступать уксусный альдегид? Ответ обоснуйте.

Вопросы для собеседования по теме «Карбоновые кислоты. Функциональные производные карбоновых кислот»

- 1. Сравните кислотные свойства пропионовой уксусной и хлоруксусной кислот.
- 2. Напишите реакции получения функциональных производных карбоновых кислот:
- а) реакции получения ангидрида пропионовой кислоты. Назовите всех участников реакции.
- б) реакции получения хлорангидрида уксусной кислоты. Назовите всех участников реакции.

- в) получите изопропиловый эфир масляной кислоты. Назовите всех участников реакции.
- 3. Напишите уравнение реакции образования амида бутановой кислоты. Назовите всех участников реакции.
- 4. Полученные функциональные производные карбоновых кислот (амиды, сложные эфиры, галогенангидриды, ангидриды) расположите в ряд по изменению их ацилирующей способности в реакциях нуклеофильного замещения.
- 5. Напишите реакции превращения более активных функциональных производных в менее активные (из галогенангидрида получите ангидрид, из ангидрида получите сложный эфир, из сложного эфира получите амид).
- 6. Напишите реакции гидролиза для галогенангидрида, ангидрида, сложного эфира, амида.
- 7. Напишите уравнение реакции этерификации для уксусной кислоты и этилового спирта. Опишите механизм.
- 8. Напишите уравнение реакции взаимодействия бензонитрила с водой. Назовите продукт реакции.
- 9. Напишите производные бензойной кислоты: салициловую, ацетилсалициловую, салол. Какими свойствами они обладают.
- 10. Сульфаниловая кислота и её производные: строение, свойства. Парааминобензойная кислота и её производные: строение и свойства.

Вопросы для собеседования по теме «Полифункциональные органические соединения: многоатомные спирты, фенолы, диамины, дикарбоновые кислоты»

- 1. Приведите примеры многоатомных спиртов. Покажите строение многоатомных спиртов на примере этиленгликоля, глицерина, сорбита.
- 2. Циклические многоатомные спирты: инозит, мезоинозит.
- 3. Свойства многоатомных спиртов: 1) этерификация минеральными и органическими кислотами; 2) дегидратация на примере этиленгликоля и глицерина; 3) окисление многоатомных спиртов;
- 4. Напишите структуру и дайте название двухатомным фенолам. Какими свойствами они обладают?
- 5. Напишите структуру и дайте название трехатомным фенолам. Какими свойствами они обладают?
- 6. Напишите реакции окисления многоатомных фенолов и дайте название продуктов реакции.
- 7. Приведите примеры дикарбоновых кислот. Назовите их характерные свойства.
- 8. Разложение кислот под воздействием концентрированной серной кислоты на примере щавелевой, малоновой и лимонной кислот.
- 9. Напишите образование ангидридов и амидов янтарной и глутаровой кислот.

Вопросы для собеседования по теме «Гетерофункциональные органические соединения: ненасыщенные карбоновые кислоты, аминоспирты и их производные, оксокислоты, гидроксикислоты»

- 1. Напишите уравнения реакций, протекающих по карбоксильной группе ненасыщенных карбоновых кислот: акриловая, кротоновая, изокротоновая.
- 2. Напишите уравнения реакций присоединения бромоводород и воды, протекающих двойной связи винилуксусной и метакриловой кислот. Объясните направление реакции.
- 3. Напишите формулы фумаровой и малеиновой кислот. Для наименее стабильного изомера напишите реакцию внутримолекулярной дегидратации.

- 4. Реакции межмолекулярной и внутримолекулярной дегидратации α -, β , γ гидроксикислот с образованием лактидов, ненасыщенных кислот и лактонов соответственно.
- 5. Многоосновные гидрокискислоты, их реакционная способность: реакции по крбоксильно, гидроксогруппе. Дегидратация, декарбоксилирование яблочной кислоты; разложение лимонной кислоты в присутствии концентрированной серной.
- 6. Классификация аминокислот (α, β, γ) .
- 7. Реакции межмолекулярной и внутримолекулярной дегидратации α -, β , γ аминокислот с образованием дикетопиперазинов, ненасыщенных кислот и лактамов соответственно.
- 8. Реакции гидрокси- и аминокислот, протекающие по амино- (гидрокси) группе и по карбоксильной группе.
- 9. Оксокислоты. Кето-енольная таутомерия.
- 10. Аминоспирты. Коламин, холин. Строение, биологическая роль.

Вопросы для собеседования по теме «Строение и свойства моно- и дисахаридов»

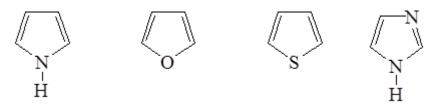
- 1. Энантиомеры, диастереомеры, эпимеры. Разобрать на примере глюкозы, фруктозы.
- 2. Напишите уравнения цикло-оксо-таутомерии для D-глюкозы и D-фруктозы. В каждой форме отметьте гликозидный гидроксил. Назовите каждую форму. Какая форма является наиболее устойчивой?
- 3. Постройте следующие циклические формы моносахаридов:
- α и β -D-маннопиранозу, α и β -D-галактопиранозу,
- α- и β-D-рибофуранозу, α- и β-D-ксилофуранозу.

В каждой форме отметьте аномерный атом углерода и гликозидный гидроксил.

- 4. Постройте открытую и циклические (пиранозные) формы D-маннозамина. Постройте его ацилированное производное.
- 5. Напишите формулу аскорбиновой кислоты, приведите уравнение ее диссоциации в водных растворах и реакцию получения дегидроаскорбиновой кислоты.
- 6. Напишите реакции получения гликозида и сложного эфира для D-галактопиранозы. Напишите уравнения гидролиза продуктов этих реакций. Назовите все вещества.
- 7. Получите простой эфир D-фруктофуранозы и назовите его.
- 8. Напишите реакции восстановления D-глюкозы, D-фруктозы,
- 9. Получите D-глюконовую и D-гюкаровую кислоты.
- 10. Получите D-маннуроновую кислоту и проведите ее декарбоксилирование.
- 11. Получите гликозид мальтозы.
- 12. Окислите лактозу бромной водой.
- 13. Постройте формулу целлобиозы, идентифицируйте моносахаридные остатки и гликозидную связь, назовите. Проявляет ли целлобиоза восстанавливающие свойства?
- 14. Получите простой эфир целлобиозы.
- 15. Приведите реакцию серебряного зеркала для целлобиозы.
- 16. Постройте формулу лактозы, идентифицируйте моносахаридные остатки и гликозидную связь, назовите. Проявляет ли лактоза восстанавливающие свойства?
- 17. Получите лактобионовую кислоту.
- 18. Получите сложный эфир лактозы.
- 19. Постройте формулу сахарозы, идентифицируйте моносахаридные остатки и гликозидную связь, назовите. Проявляет ли сахароза восстанавливающие свойства?

Вопросы для собеседования по теме «Гомо- и полисахариды»

1. Сравните крахмал и гликоген (происхождение, разветвленность, молекулярные массы и т.д.). Каковы функции гликогена?

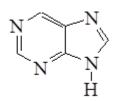

- 2. Постройте формулу целлюлозы, охарактеризуйте гликозидные связи, вторичную структуру. Какова молекулярная масса целлюлозы?
- 3. Постройте формулу декстранов, охарактеризуйте гликозидные связи. Какова молекулярная масса декстранов? Для чего используются декстраны?
- 4. Постройте формулы хондрозина и хондроитин-4-сульфата, охарактеризуйте гликозидные связи. Какова молекулярная масса хондроитин-4-сульфата?
- 5. Постройте формулы биозного фрагмента гиалуроновой кислоты и собственно гиалуроновой кислоты, охарактеризуйте гликозидные связи. Какова молекулярная масса гиалуроновой кислоты?
- 6. Пектовая кислота построена из остатков D-галактуроновой кислоты, связанных $\alpha(1\rightarrow 4)$ -гликозидными связями. Постройте ее формулу.

Вопросы для собеседования по теме «Липиды»

- 1. Дайте определения следующим понятиям: липиды, омыляемые липиды, неомыляемые липиды, простые липиды, сложные липиды. Приведите примеры.
- 2. Приведите формулы высших жирных кислот. Какие общие особенности структуры им присущи?
- 3. Приведите пример воска и напишите реакцию его кислого гидролиза.
- 4. Приведите примеры жидкого и твердого триацилглицеринов и напишите реакции их омыления.
- 5. Приведите реакцию гидрогенизации триолеоилглицерина. Как при этом меняются физические свойства вещества?
- 6. Постройте формулу L-фосфатидовой кислоты. Напишите реакцию её кислого гидролиза.
- 7. Постройте формулы кефалинов и лецитина. Напишите реакции их омыления.
- 8. Приведите пример сфингомиелина. Какое вещество лежит в его основе?
- 9. Какие углеводы входят в состав цереброзидов? Приведите пример цереброзида.
- 10. На примере лецитина рассмотрите бифильность липидов. Чем она обусловлена?
- 11. Рассмотрите возможные варианты окисления олеиновой кислоты.
- 12. Приведите классификацию терпенов. В чем отличие между терпеновыми углеводородами и терпеноидами? Приведите примеры.

Вопросы для собеседования по теме «Биологически важные пятичленные и шестичленные гетероциклические соединения»

- 1. Какие соединения называются гетероциклическими? Приведите классификацию гетероциклов и примеры соответствующих соединений.
- 2. Приведите примеры ароматических гетероциклических соединений. Какие виды сопряжения осуществляются в них?
- 3. Опишите электронное строение и пиррольного атома азота. Что такое π -избыточные системы?
- 4. Докажите ароматичность, пиррола, фурана, тиофена, имидазола.



5. Постройте формулы пятичленных гетероциклов с одним и с двумя гетероатомами и приведите нумерацию атомов в циклах. Удовлетворяют ли эти соединения критериям ароматичности?

- 6. В чем заключается ацидофобность фурана и пиррола?
- 7. Опишите кислотные свойства пиррола.
- 8. Приведите уравнения галогенирования, алкилирования и ацилирования пиррола.
- 9. Напишите реакцию восстановления пиррола.
- 10. Структура *темрапиррольных* соединений и их значение в растительных и животных организмах.
- 11. Получите из фурана и фурфурола их нитропроизводные. Где применяются 5-нитропроизводные фуранового ряда?
- 12. Таутомерия имидазола. Напишите реакцию декарбоксилирования гистидина. Какую функцию выполняет в организме продукт данной реакции?
- 13. Приведите примеры шестичленных ароматических гетероциклических соединений. Какие виды сопряжения осуществляются в них?
- 14. Опишите электронное строение пиридинового атома азота. Что такое π недостаточные системы?
- 15. Докажите ароматичность пиридина, пиримидина, пурина.

- 16. Опишите электронное строение пиррольного и пиридинового атомов азота. На примере имидазола покажите, какие свойства: кислотные или основные,— они проявляют. Приведите соответствующие уравнения реакций.
- 17. Постройте формулы пиридина, хинолина, изохинолина, пиримидина, пиразина, пиридазина и приведите нумерацию атомов в них. Докажите соответствие этих соединений критериям ароматичности.
- 18. Сравните реакционную способность пиридина и бензола в реакциях электрофильного замещения. Приведите уравнения реакций нитрования и бромирования пиридина.
- 19. Приведите уравнения реакций взаимодействия пиридина с метилйодидом, и хлороводородной кислотой. В каких из этих реакций проявляются нуклеофильные, а в каких основные свойства гетероатома?
- 20. Гомологи пиридина *пиколины*. Приведите реакции получения α , β , γ -пиколинов из соответствующих соединений.
- 21. Из никотиновой кислоты получите два производных, выполняющих важные функции в организме. Перечислите эти функции.
- 22. Приведите для хинолина схемы реакций окисления и восстановления.

Вопросы для собеседования по теме «Биополимеры. Нуклеозиды и нуклеотиды. Нуклеиновые кислоты: ДНК, РНК.»

- 1. Призводные пиримидина: урацил, тимин, цитозин. Напишите для каждого из них лактим-лактамную таутомерию.
- 2. Производные пурина: аденин. Напишите реакцию дезаминирования аденина и лактим-лактамную таутомерию продукта реакции.
- 3. Производные пурина: гуанин. Приведите схему лактим-лактамной таутомерии и таутомерии азолов для гуанина. Напишите реакцию дезаминирования гуанина.
- 4. Получите из мочевой кислоты её кислую и среднюю соль.
- 5. Приведите формулы углеводных фрагментов РНК и ДНК. В какой форме они входят в состав нуклеиновых кислот?

- 6. Приведите формулы всех рибонуклеозидов и дезоксирибонуклезидов. Назовите их. Дайте характеристику связи между компонентами нуклеозидов.
- 7. Постройте формулы следующих соединений:
- а) цитидин-5'-фосфат (рС);
- б) дезоксигуанозин-3'-фосфат (dGp);
- в) 5'-тимидиловая кислота (pdT);
- г) аденозин-3',5'-циклофосфат.
- 8. Приведите пример нуклеозидполифосфата. Охарактеризуйте связи между компонентами. Какие связи называются макроэргическими?
- 9. Опишите строение полинуклеотидной цепи.
- 10. Опишите вторичную структуру ДНК. Покажите образование водородных связей в парах комплементарных нуклеиновых оснований.

Критерии оценки при собеседовании:

- Оценка "отлично" выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.
- Оценка "хорошо" выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.
- Оценка "удовлетворительно" выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.
 - Оценка "неудовлетворительно" выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы. Как правило, оценка "неудовлетворительно" ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.
 - 2. Оценочные средства для итоговой аттестации по итогам освоения дисциплины Форма аттестации в 1 семестре зачет с оценкой

Порядок проведения итоговой аттестации. Итоговая аттестация проводится в форме зачета с оценкой.

Зачет проходит в форме письменного опроса. Студенту достается вариант билета путем собственного случайного выбора и предоставляется 60 минут на подготовку.

Критерии оценивания письменного ответа на зачете:

- Оценка "отлично" выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач.
- Оценка "хорошо" выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на

вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.

- Оценка "удовлетворительно" выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.
- Оценка "неудовлетворительно" выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы. Как правило, оценка "неудовлетворительно" ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Фонды оценочных средств для проверки уровня сформированности компетенций для промежуточной аттестации по итогам освоения дисциплины «Биоорганическая химия»

<u>ОПК-8</u> Способен использовать основные физико-химические, математические и естественно-научные понятия и методы при решении профессиональных задач.

- 1) Типовые задания для оценивания результатов сформированности компетенции на уровне «Знать»
- 1.Способы выражения концентрации растворов (массовая доля, объемная доля, молярная концентрация, молярная концентрация эквивалента, моляльная концентрация, мольная доля.
- 2. Закон эквивалентов. Эквиваленты кислот, оснований, солей. Определение масс эквивалентов кислот, оснований, солей.
- 3. Взаимодействие веществ в растворах по закону эквивалентов.
- 4. Определение концентрации моль-эквивалента и объема раствора на основании законов эквивалентов.
- 5. Электролитическая диссоциация (причины электролитической диссоциации, механизм электролитической диссоциации для веществ с ионной связью, веществ с полярной связью).
- 6. Сильные и слабые электролиты. Константа диссоциации. Что называется степенью диссоциации? Какие факторы влияют на степень диссоциации?
- 7. Какая зависимость существует между степенью диссоциации, константой диссоциации и концентрацией раствора слабых электролитов?
- 8. Расчет концентраций ионов в растворах сильных электролитов, слабых электролитов (кислот, оснований)
- 9. Правила написания ионообменных реакций
- 10. Ионная сила, активность ионов. Уравнения Дебая и Хюккеля
- 11. Теория кислот и оснований.
- 12. Ионное произведение воды. Водородный показатель.
- 13. Что называется водородным показателем (pH)? Гидроксильным показателем (pOH)? Как их можно рассчитать? Что значит: «кислая», «нейтральная», «щелочная среда»?
- 14. Коллигативные свойства растворов неэлектролитов, слабых, сильных электролитов.
- 15. Законы Рауля
- 16. Понижение температуры замерзания и повышение температуры кипения, зависимость их от концентрации раствора.
- 17. Эбулиоскопический и криоскопический методы определения молекулярных масс веществ.
- 18. Осмос и осмотическое давление. Закон Вант-Гоффа.
- 19. Изотонический коэффициент.
- 20. Роль осмоса и осмотического давления в биологических системах. Гипо- ,гипер- и

изотонические растворы. Плазмолиз и гемолиз.

- 21. Определение буферных систем. Классификация буферных систем.
- 22. Уравнения Гендерсона Гассельбаха для буферов 1 и 2 типов.
- 23. Механизм действия буферов (на примере ацетатного буфера, аммиачного буфера), формула расчета.
- 24. Буферная емкость.
- 25. Буферные системы крови. Механизм действия. Значение буферных систем.
- 26. Классификация алифатических α-аминокислот в зависимости от числа карбоксильных групп и аминогрупп.
- 27. Классификация алифатических α-аминокислот в зависимости от наличия в алифатическом радикале дополнительных функциональных групп.
- 28. Ароматические и гетероциклические α-аминокислоты. Приведите формулы, обозначьте метиленовые группы. Какую роль играет метиленовая группа при формировании пространственной структуры белковой макромолекулы?
- 29. Полярные и неполярные α-аминокислоты. Приведите примеры, дайте названия. Объясните, почему гидроксильная группа в тирозине является ионогенной, а в серине неионогенной.
- 30. Дайте определение незаменимых а-аминокислот. Напишите формулы и назовите их.
- 31. Медико-биологическое значение α-аминокислот. Приведите формулы глицина, глутаминовой кислоты, цистеина, гистидина и метионина. Как данные α-аминокислоты используются в медицинской практике?
- 32. Изобразите в виде проекционных формул Фишера энантиомеры аланина и глутаминовой кислоты. Обозначьте асимметрические атомы углерода. Назовите по D,L-номенклатуре.
- 33. Приведите формулы α-аминокислот, содержащих 2 асимметрических атома углерода в молекуле. Постройте проекционные формулы Фишера для любой из приведенных кислот. α-Аминокислоты какого ряда (D или L) входят в состав белков человеческого организма?
- 34. Какие α-аминокислоты называют «неприродными»? Напишите реакцию взаимодействия любой «неприродной» α-аминокислоты с гидроксидом натрия.
- 35. Чем обусловлена амфотерность α-аминокислот? Докажите амфотерность α-аминокислот на примере валина. Напишите необходимые уравнения реакций.
- 36. Какая функциональная группа обуславливает наличие кислотных свойств αаминокислот? С помощью химических реакций докажите наличие кислотных свойств у аспарагиновой кислоты.
- 37. Какая функциональная группа обуславливает наличие основных свойств α-аминокислот? Напишите уравнение реакции, доказывающей наличие основных свойств у L-Аргинина.
- 38. Какой кислотой кислой или основной является лизин? Ответ обоснуйте. Напишите необходимые уравнения реакций.
- 2) Типовые задания для оценивания результатов сформированности компетенции на уровне «Уметь» (решать типичные задачи на основе воспроизведения стандартных алгоритмов решения):
- 1. К 15 мл раствора муравьиной кислоты прибавили 12 мл 0,15 моль/л раствора формиата калия. Вычислите рН полученной смеси. $K_{HCOOH}=1,77*10^{-4}$
- 2. Найти рН буферного раствора состоящего из 10 мл раствора уксусной кислоты с С 1/z = 0.25 моль/л и 5 мл раствора ацетата натрия с С 1/z = 0.1 моль/л. К $_{\text{CH3COOH}} = 1.8 \times 10^{-5}$.
- 3. Найти рН буферной смеси состоящей из 10 мл раствора NH_4Cl и 5 мл раствора NH_4OH , если C 1/z исходных растворов равны 0,1 моль/л, а $K_{NH4OH} = 1,8*10^{-5}$.

- 4. К 20 мл 0,2 М раствора уксусной кислоты добавили 5 мл 0,3 М раствора гидроксида натрия. Вычислить рН полученного раствора. $K_{CH3COOH}=1.8*10^{-5}$. 4,52
- 5. Смешали 10 мл 0,2 моль/л раствора соляной кислоты и 20 мл 0,3 моль/л раствора аммиака. Определите pH полученного раствора. $K_{\rm NH4OH}$ =1,8 * 10⁻⁵
- 6. Определить буферную емкость крови по щелочи, если для изменения рН от 7,4 до 8,0 к 10 мл крови надо добавить 4 мл 0,01моль/л раствора щелочи?
- 7. Сколько мл 2 моль/л раствора ацетата натрия надо прибавить к 200 мл 1 моль/л раствора уксусной кислоты, чтобы рH стало равным 4. $K_{CH3COOH}$ =1,8 * 10⁻⁵
- 8. Какой объем раствора формиата натрия (массовая доля 20% плотность 1,13г/мл) следует добавить км 100мл 0,1м НСООН, чтобы получить раствор с рН 4,20 (8,5)
- 9. Рассчитайте буферного раствора кислоте, емкость если при добавлении 50 этого раствора ΜЛ соляной ΜЛ кислоты с концентрацией 0,8 моль/л рН изменится от 7,3 до 7,0. $[B_a = 0.107 \text{ моль/л}]$
- **10.** К 0,1 М раствору гидроксида натрия объемом 10 мл прибавили 0,1 М раствор муравьиной кислоты объемом 10 мл. Обладает ли полученный раствор буферным действием? Ответ подтвердите расчетом.
- 11. Напишите уравнение реакции взаимодействия аланина с Cu(OH)_{2.} Почему эта реакция является одним из неспецифических способов обнаружения α-аминокислот?
- 12. Напишите уравнение реакции этерификации фенилаланина. Назовите всех участников реакции.
- 13. Напишите уравнение реакции этерификации тирозина. Назовите всех участников реакции.
- 14. Напишите уравнение реакции образования N-ацильного производного метионина.
- 15. Осуществите превращения:
- 16. Аланин 🗆 🗆 🗘 Х 🗆 🗆 🗆 хлорангидрид
- 17. Назовите всех участников реакции.
- 18. Получите основание Шиффа из лизина.
- 19. Обнаружение аланина с помощью нингидриновой реакции
- 20. Ксантопротеиновая реакция на тирозин
- 21. Напишите уравнения реакций взаимодействия с HNO_2 для цистеина и треонина. Назовите продукты реакции.
- 22. В каждом билете: постройте трипептид по указанному названию. Покажите пептидную связь.
- 23. Приведите реакцию восстановления ксилозы. Назовите продукт реакции.
- 24. Приведите реакцию восстановления глюкозы. Назовите продукт реакции.
- 25. Приведите реакцию восстановления маннозы. Назовите продукт реакции.
- 26. Напишите уравнения взаимодействия α D-глюкопиранозы с метиловым спиртом. Назовите продукт реакции
- 27. Напишите уравнения взаимодействия α D-фруктопиранозы с метиловым спиртом. Назовите продукт реакции
- 28. Получите гликозид D-глюкозы
- 29. Получите метил-D-глюкопиранозид из глюкозы.
- 30. Напишите уравнение гидролиза для этил-β-D-фруктофуранозида.
- 31. Напишите уравнение гидролиза для метил-β-D-глюкопиранозида.
- 32. Приведите примеры О- и N-гликозидов.
- **33.** Приведите формулы 1-фосфат α -D-глюкопиранозы и 1,6-дифосфат α -D-фруктофуранозы.

- **3) Типовые задания для оценивания результатов сформированности компетенции на уровне «Владеть»** (решать усложненные задачи на основе приобретенных знаний, умений и навыков, с их применением в нетипичных ситуациях, формируется в процессе практической деятельности):
- 1. В каком соотношении следует смешать растворы уксусной кислоты и ацетата натрия с молярной концентрацией эквивалента 0.02 моль/л, чтобы получить 100 мл буферного раствора с рH = 4.5? К_{СН3СООН} = $1.75*10^{-5}$. 64.10 мл кислоты, 35.89 мл соли
- 2. В каком соотношении надо смешать растворы уксусной кислоты и ацетата натрия имеющие равные концентрации, чтобы получить буферный раствор с рH=6 $K_{CH3COOH} = 1.8*10^{-5}$.
- 3. Какой объем раствора формиата натрия (массовая доля 20% плотность 1,13г/мл) следует добавить км 50мл 0,5м HCOOH, чтобы получить раствор с pH 4 (13,3)
- 4. Вычислить pH буферного раствора NH₄OH + NH₄Cl если концентрация каждого компонента равна 0.2 г-экв/л? Как изменится pH раствора, если к 1 литру его добавить 0.02 гэкв/л соляной кислоты? $K_{\rm NH4OH}=1.8*10^{-5}$. $\Delta pH=0.09$
- 5. Определить буферную емкость буферной смеси состоящей 0,16 моль- эквивалентов соли и 0,08 моль эквивалентов слабой кислоты (рК кислоты 3,6) если к 1 л. этой смеси добавили 50 мл раствора HCl с C 1/z = 0,1 моль/л.
- 6. Рассчитайте емкость буферного раствора по кислоте, если при добавлении к 50 мл этого раствора 2 мл соляной кислоты с концентрацией 0,8 моль/л рН изменился от 7,3 до 7,0.
- 7. Как изменится pH, если к ацетатному буферному раствору, состоящему из 100 мл кислоты и 100 мл соли, с концентрацией компонентов по 0,1 моль/л, прибавить 10 мл раствора с концентрацией соляной кислоты 0,1 моль/л? pK(к-ты) = 4,76.
- 8. Получите из D-глюкозы D-глюкаровую кислоту
- 9. Получите из D-глюкозы D-глюконовую кислоту.
- 10. Получите из D-глюкозы D-глюкуроновую кислоту.
- 11. Приведите для рибозы открытую формулу Фишера и представьте ее как β -D-рибофуранозу.
- 12. Приведите для дезоксирибозы открытую формулу Фишера и представьте ее как β-D-дезоксирибофуранозу.
- 13. Изомеризация моносахаридов в разбавленных растворах щелочей (на примере D-глюкозы)
- 14. Мальтоза. Строение. Почему мальтоза относится к восстанавливающим дисахаридам?
- 15. Приведите цикло-оксо-таутомерию мальтозы.
- 16. Получите мальтобионовую кислоту.
- 17. Напишите уравнение гидролиза для целлобиозы.
- 18. Окислите целлобиозу бромной водой.
- 19. Приведите цикло-оксо-таутомерию целлобиозы.
- 20. Приведите для лактозы α-, β- и открытую форму. Назовите их.
- 21. Окислите лактозу бромной водой.
- 22. Какие невосстанавливающие дисахариды вы знаете? Приведите пример и опишите строение.
- 23. Сахароза. Строение. Гидролиз.
- 24. Приведите строение амилозы. Из чего построена эта молекула? Дайте характеристику гликозидной связи. Способность к гидролизу.

- 25. Приведите строение амилопектина. Из чего построена эта молекула. Дайте характеристику связей между монозными остатками. Способность к гидролизу.
- 26. Приведите строение гликогена. Из чего построена эта молекула. Дайте характеристику связей между монозными остатками. Способность к гидролизу.
- 27. Приведите строение целлюлозы. Из чего построена эта молекула. Дайте характеристику связи между монозными остатками. Способность к гидролизу.
- 28. Приведите строение амилозы и целлюлозы. Сравните их вторичную структуру. Какая реакция является качественной на крахмал?
- 29. Приведите строение пектовой кислоты. Из чего построена эта молекула? Дайте характеристику связи между монозными остатками.
- 30. Полисахариды соединительной ткани: биологическая роль, общие черты строения. Приведите строение N-ацетилхондрозина. Из чего построена эта молекула? Дайте характеристику связей между монозными остатками.
- 31. Биологическая роль хондроитинсульфатов. Приведите формулу хондроитин-6-сульфата. Из чего построена эта молекула? Дайте характеристику связей между монозными остатками.
- 32. Приведите формулу гиалуроновой кислоты. Из чего построена эта молекула? Дайте характеристику связей между монозными остатками. Функция гиалуроновой кислоты в организме.